
miniff
Release 0.1.4

miniff authors

Aug 10, 2021

CONTENTS:

1 Introduction 3
1.1 Glossary . 3

2 Using miniff 7
2.1 As an executable . 7
2.2 As a library . 7

3 Tutorials 9
3.1 Toy function fitting . 9
3.2 Computing descriptors . 15
3.3 Classical potentials . 20

4 Miniff Design Documentation 23
4.1 Structure . 23
4.2 Deployment . 24

5 Indices and tables 25

i

ii

miniff, Release 0.1.4

miniff uses neural networks to compute energies and forces of atomic systems. Read more about the method from
Behler and Parrinello. Preferred installation method is pip

pip install miniff

The source code is hosted at Quantum Tinkerer. Report bugs here. BSD license.

CONTENTS: 1

https://doi.org/10.1103/PhysRevLett.98.146401
https://gitlab.kwant-project.org/qt/miniff
https://gitlab.kwant-project.org/qt/miniff/-/issues

miniff, Release 0.1.4

2 CONTENTS:

CHAPTER

ONE

INTRODUCTION

1.1 Glossary

• atom, point: a vector in real (typically, 3D) space defining the location and the metadata associated with this
location. This gives us information about an individual small object in space.

• structure, cell, box: a set of points enclosed into a parallelogram and representing a snapshot of atoms in media
(molecular, solid, liquid, etc.). A box is a way to describe how multiple atoms share the same space. This
can simply be a list of coordinates, for example. Related classes: miniff.kernel.Cell, miniff.kernel.
CellImages.

• potential, interaction, spring: a protocol (a function) taking atomic coordinates of two or three atoms (option-
ally, matching a set of conditions) and producing a single floating-point number. For example, potentials may
describe how strongly atoms interact with each other.

• atomic environment: a single point picked in a structure. Atomic environment is a very abstract way of telling
which interactions are important and how atoms are grouped by these interactions.

• partial energy, atomic energy, potential energy: a sum of all interaction values the chosen atom participates in.
The potential energy value may be subject to double-counting issues when a single potential is shared between
many atoms. Related classes: miniff.potentials.LocalPotential, miniff.ml.NNPotential.

• machine learning (ML) potential: a variant of the partial energy where the sum is replaced by a more complex
process involving machine learning techniques.

• (total) energy: a sum of all atomic energies defining the cumulative energy accumulated in the structure and
originating from attractions and repulsions of individual atoms. Predicting total energy from structures is the
primary purpose of this package.

• (total) energy landscape: total energy as a function of one or more parameters of a structure. It is simply a way
to look at the total energy as a scalar function of many variables.

• (total) energy minimum: a structure and the corresponding total energy minimum of the potential landscape.
Finding potential energy minimum is one of the primary purposes of the total energy description.

• charge: a scalar belonging to atomic metadata with the properties of partial energy. Charges are used to treat
long-range potentials which cannot be described by atomic environments. Charges are not necessary physical
(Coulomb) charges: they may also be electronegativities or any other scalar property of an atom.

• force, stress: negative gradients of the total energy with respect to coordinates describing structures. Forces
indicate the direction in a multidimensional space where the total energy becomes smaller.

3

miniff, Release 0.1.4

• descriptors: a special sort of potential energy intended to describe atomic environments. Descriptors are typi-
cally defined by local environments. Unlike potentials, descriptor functions usually have a simple smooth form.

4 Chapter 1. Introduction

miniff, Release 0.1.4

1.1. Glossary 5

miniff, Release 0.1.4

6 Chapter 1. Introduction

CHAPTER

TWO

USING MINIFF

2.1 As an executable

Standard workflows in miniff can be accessed by running:

python -m miniff jobs.yml

where jobs.yml lists job parameters. For example:

fit:
prepare:
fn_cells: fit-structures.json

run:
n_epochs: 10
save: potentials.pt

test-direct:
prepare:
fn_cells: test-structures.json
potentials: potentials.pt

Root arguments specify what kind of workflow to perform: fit, test-direct, and others. For each workflow, argu-
ments are stored in three section corresponding to Workflow.__init__, Workflow.prepare, and Workflow.run.
If either of the section is absent the corresponding workflow stage will still run with the default arguments. If multiple
workflows are specified, they will be invoked in the order they are present in the job file.

2.1.1 Arguments

The available arguments are specified in documentation of miniff.ml_util.

2.2 As a library

miniff is a python library with a plain modular structure. Depending on the needs, it can be used integrally or by
individual pieces.

7

miniff, Release 0.1.4

2.2.1 Workflows

TBD

2.2.2 Dataset construction

TBD

2.2.3 Descriptors and potentials

TBD

8 Chapter 2. Using miniff

CHAPTER

THREE

TUTORIALS

3.1 Toy function fitting

miniff is built around the idea of using neural-network fits to describe inter-atomic interactions. This is done in three
basic steps:

1. constructing the dataset;

2. fitting the data (= finding optimal map parameters);

3. using the fit.

This tutorial demonstrates the first two steps in the context of simple scalar function fitting. We will pick a function and
will try to perform a least-squares fit. Then, we will repeat the procedure with the help of miniff.ml and miniff.
ml_util modules to introduce the key concepts of dataset construction and fitting in miniff.

3.1.1 The toy problem

Neural-network fitting is useful for interpolating black-box functions which otherwise require intensive computations.
For pedagogical reasons, let us instead try to fit a simple analytic function defined for positive r and resembling some
features of realistic interatomic potentials:

𝑓 (𝑟) =
(︀
𝑟2 − 𝑟 + 1

)︀
𝑒−𝑟.

Let’s first plot the function:

import numpy as np
from matplotlib import pyplot

def f(r):
return (r ** 2 - r + 1) * np.exp(-r)

r = np.linspace(0.1, 10, 100)
f_r = f(r)
pyplot.plot(r, f_r)

[<matplotlib.lines.Line2D at 0x7f777a4ae4d0>]

9

miniff, Release 0.1.4

The function has two extrema at r = 1, 2 and decays rapidly: these are the features which we will attempt to repro-
duce.

When fitting, we only have access to discretized sampling values f_r, but not to the functional form f(r). In prin-
ciple, we may still use f(r) as a black box to produce more sampling points but we consider this operation to be
computationally expensive, thus, to only be used before the fitting.

3.1.2 1. Constructing the dataset

The fitting data (or the dataset) includes two pieces of information: blackbox outputs and descriptors. They can be
also seen as right-hand and left-hand sides of the map g(r)->f(r) respectively, where f(r) are previously computed
blackbox function values f_r.

What are descriptors?

The purpose of descriptors g(r) is to describe values of r where f(r) was computed in a physically reasonable way.
Can we use values of g(r)=r directly? Yes, but g(r) play the role of pre-conditioners: we input some intuition about
how f(r) would most reasonably look like while leaving particular details to be determined during the fitting process.

Additionally, we allow the blackbox function to have an arbitrary number of inputs such as

𝑓 (�⃗�) =
∑︁
𝑖

(︀
𝑟2𝑖 − 𝑟𝑖 + 1

)︀
𝑒−𝑟𝑖 .

In this case we may want to construct the dataset from vectors of a non-constant dimension r = ([0], [0.1, 0.2],
[2.2, 3, 2], ...). To employ neural network machinery, however, we usually need a constant number of inputs.
This can be achieved by using a descriptor of the form

𝑔 (�⃗�) =
∑︁
𝑖

𝑟𝑖

in place of r. Importantly, the above descriptor also respect the permutation symmetry of f(r): f(x, y) = f(y,
x), g(x, y) = g(y, x). Thus, the follow-up fitting process does not need to deduce this symmetry in a hard way
numerically.

10 Chapter 3. Tutorials

miniff, Release 0.1.4

How to choose descriptors?

• g(r) should include as much intuition as possible (symmetries, asymptotic behavior, . . .);

• g(r) should be simple enough functions fast to compute.

Here we choose the following family of descriptors which obviously satisfies both recommendations:

𝑔𝑖(𝑟) = 𝑟𝑖𝑒−𝑟.

We also know the exact form of the map to be fitted:

𝑓(𝑟) = 𝑔2(𝑟)− 𝑔1(𝑟) + 𝑔0(𝑟).

So, to complete the dataset we compute g_0, g_1, g_2 at previously chosen sampling points.

def g(r, i):
return r ** i * np.exp(-r)

g_r = np.array(tuple(g(r, i) for i in range(3)))
pyplot.plot(r, f_r, label="target function")
for i, _g in enumerate(g_r):

pyplot.plot(r, _g, ls="--", label=f"g_{i}")
pyplot.legend()

<matplotlib.legend.Legend at 0x7f77498d4450>

3.1. Toy function fitting 11

miniff, Release 0.1.4

3.1.3 2. Fitting the data

For this example whe know there exists a linear combination of descriptors perfectly reproducing the black-box function

𝑓(𝑟) =
∑︁
𝑖

𝑎𝑖 · 𝑔𝑖(𝑟).

Thus, the least-squares fit will find map parameters a_i.

gf_map, res, rank, s = np.linalg.lstsq(g_r.T, f_r)
print(gf_map)

from numpy import testing
testing.assert_allclose(gf_map, (1, -1, 1))

[1. -1. 1.]

According to the last formula in the previous section, the answer is [1, -1, 1].

3.1.4 miniff setting

The above solution can be also obtained from miniff with the same workflow.

1. Constructing the dataset (miniff)

miniff.ml contains handy pipelines for dataset construction and pre-processing. PerCellDataset and
PerPointDataset are the two key containers where descriptors and target function values are stored. Some data
pieces (such as descriptors, but also atomic charges and more) can be assigned to individual points (atoms) and are
stored in PerPointDataset. Other data pieces (such as total interatomic energies) are cumulative values that are
stored in PerCellDataset. Due to the nature of force-field fitting, there can be only one PerCellDataset but one
or more ``PerPointDataset``s.

In this case we store f_r into the total interaction energy slot of PerCellDataset to benefit from the energy fitting
pipeline.

import torch
from miniff import ml

rhs = ml.PerCellDataset(
energy=torch.tensor(f_r, dtype=torch.float32)[:, None],

)

All dataset pieces have to be torch tensors of a fixed shape. In this case “energy” is required to be a column array with
the second dimension equal to 1: otherwise a ValueError will be raised.

Descriptors are stored in PerPointDataset as a standard.

lhs = ml.PerPointDataset(
features=torch.tensor(g_r.T, dtype=torch.float32)[:, None, :],
mask=torch.ones(len(r), 1),

)

Here, we additionally specify the mask which weights individual data points. Again, the dimensions of input tensors
are well-defined. As a final step, we collect the two pieces of fitting data into the Dataset object.

12 Chapter 3. Tutorials

miniff, Release 0.1.4

dataset = ml.Dataset(rhs, lhs)

At this point all tensor shapes are checked and we are ready to set up the fitting.

2. Fitting the data (miniff)

First, we need to define the functional form of the map. In this case the map is linear which can be declared using
torch.nn.Linear.

𝑓 = 𝑊 · 𝑔,

where W stands for weights.

nn = torch.nn.Linear(in_features=3, out_features=1, bias=False)

Here, 3 stands for the descriptor count, 1 is output count (single energy), bias=False tells that no constant is added
to the linear form.

To obtain the best fit we use energy fit optimisation pipeline defined in miniff.ml_util. First, we define the closure
to be energy difference closure. In general, closure defines the loss function to optimize but the corresponding ml_util
object also includes default optimization settings.

from miniff import ml_util

tolerance = dict(
tolerance_change=1e-14,
tolerance_grad=1e-14,

)

closure = ml_util.simple_energy_closure([nn], dataset,
optimizer_kwargs=tolerance)

Let’s check that the initial (random) guess is non-optimal.

print("Initial loss:", closure.loss().loss_value.item())

Initial loss: 0.010355422273278236

Finally, let’s run the optimization and check the loss function value becomes small.

closure.optimizer_init()
closure.optimizer_step() # LBFGS algorithm by default
loss = closure.last_loss.loss_value.item()
print("Final loss:", loss)
assert loss < 1e-8

Final loss: 1.784633621844346e-15

Parameters are now stored in the neural network module.

weights = nn.weight.detach().squeeze().numpy()
print(weights)
testing.assert_allclose(weights.squeeze(), [1, -1, 1], atol=1e-3)

3.1. Toy function fitting 13

miniff, Release 0.1.4

[1.0000002 -1.0000002 1.0000001]

Checking the result

Finally, let’s check whether the fit is reasonable by plotting it.

def nn_fit(r, descriptor_fns, nn):
Compute descriptors
descriptors = np.array(tuple(g(r) for g in descriptor_fns))
Compute the map
result = nn(torch.tensor(descriptors.T, dtype=torch.float32))
return result.detach().numpy().squeeze()

from functools import partial

f_r_test = nn_fit(
r,
tuple(partial(g, i=i) for i in range(3)),
nn,

)
pyplot.plot(r, f_r)
pyplot.scatter(r, f_r_test)

<matplotlib.collections.PathCollection at 0x7f76dffe0c50>

The function nn_fit demonstrates how to propagate the map forward: one needs to (1) compute descriptors as a
function of input r and (2) to feed them to the neural network.

14 Chapter 3. Tutorials

miniff, Release 0.1.4

3.1.5 Advanced

It does not make sense to use anything but linear map for this particular problem with a known exact solution. However,
if we chose to, for example, reduce the descriptors to g_0 only or to chose different descriptors then the linear map
becomes a crude approximation. In this case one typically switches to a more general neural-network setting with
non-linear activation layers helping to map various curvature features in the dataset. One can use torch machinery
for this or just otherwise increase n_layers when initializing the map. With n_layers=2, for example, one sigmoid
activation layer is inserted between two linear layers.

The use of ml_util functions is entirely optional. They aim to provide default optimization setting to start with: loss
functions (2-norm), optimizers (LBFGS), descriptor sets (Behler recipe). You are free to modify and replace these
components at the point when you feel that the default choice is no longer optimal.

3.2 Computing descriptors

Computing descriptors is an important part of both constructing datasets and using neural-network fits.

3.2.1 The problem

Consider a unit box in 3 dimensions. n = 100 atoms are present in the box; their cartesian coordinates are written in
a [100 x 3] matrix r such that 0 <= r <= 1.

import numpy as np

n = 100
a = 0.3
r = np.random.rand(100, 3)

Our task is to count atomic neighbors inside a shell of size a = 0.3 for each atom. This is what a typical descriptor
looks like: it counts neighbors in shells around each atom.

To make a continuous function out of neighbor count let’s introduce a kernel function of neighbor distance r smoothly
decaying from a unit value at r = 0 down to zero at cutoff value r = a. Let’s take a half-period of cosine function for
this example.

𝑔(𝑟) =
1 + cos 𝜋𝑟

𝑎

2
𝑟 < 𝑎

def g(r):
return (1 + np.cos(np.pi * r / a)) / 2 * (r < a)

from matplotlib import pyplot
x = np.linspace(0, a)
pyplot.plot(x, g(x))

[<matplotlib.lines.Line2D at 0x7fc0cd9424d0>]

3.2. Computing descriptors 15

miniff, Release 0.1.4

Instead of computing neighbors directly let’s compute the cumulative value of the kernel function for all neighbors.

𝑛𝑖 =
∑︁
𝑗

𝑔(𝑟𝑖𝑗)

3.2.2 Computing naively

We start with computing all pair distances between atoms.

mdist = np.linalg.norm(r[:, None, :] - r[None, :, :], axis=-1)

Then, we reduce pair distances using the kernel function.

result = g(mdist).sum(axis=0) - 1

Finally, we can plot the distribution of neighbors across all points.

from matplotlib import pyplot
pyplot.hist(result)

(array([13., 14., 16., 27., 8., 5., 7., 5., 4., 1.]),
array([0. , 0.45074515, 0.90149029, 1.35223544, 1.80298058,

2.25372573, 2.70447087, 3.15521602, 3.60596116, 4.05670631,
4.50745146]),

<BarContainer object of 10 artists>)

16 Chapter 3. Tutorials

miniff, Release 0.1.4

This approach is straightforward but not efficient. First, matrix mdist includes information about very distant atoms
we simply discard. Second, we can only perform pair reductions this way: counting atomic triples within the same
sphere of radius a will require a tensor with three dimensions raising memory requirements by a factor of n = 100.
Instead, miniff uses a more efficient approach with a quasi-linear complexity scaling.

3.2.3 Computing neighbors with miniff

miniff provides an interface to computing neighbors efficiently. It uses KDTree from scipy to compute neighbor
lists and cython functions to iterate over the list and to reduce it to the desired quantities. As such, there are two key
steps.

1. Compute neighbor lists

The primary purpose of miniff.kernel module is to perform neighbor list construction using compute_images
method and CellImages class. To do it, we first construct a unit cell object with atomic coordinates.

from miniff.kernel import Cell, compute_images

cell = Cell(np.eye(3), r, ['a'] * len(r))

The second step is to compute its images (neighbors) given the cutoff value and other periodicity information.

images = compute_images(cell, cutoff=a, pbc=False)
print(len(images.distances.data))

794

As a result, images.distances contains neighbor distance data.

3.2. Computing descriptors 17

miniff, Release 0.1.4

2. Reduce

In principle, neighbor counts can be deduced from the sparse matrix images.distances directly with previously
defined method g. A more conventional workflow is to pick a reduction function from miniff.potentials module.
Specifically, miniff.potentials.sigmoid_descriptor_family provides the following reduction function:

𝑛𝑖 =
∑︁
𝑗

1

1 + 𝑒
𝑟𝑖𝑗−𝑟0

𝑑𝑟

·
1 + cos

𝜋𝑟𝑖𝑗
𝑎

2
,

where r_ij is the distance matrix, r0, dr and a are constant parameters. By setting dr to a small value and r0 to 2a
we simplify the expression to the second term only

𝑛𝑖 ≈
∑︁
𝑗

1 + cos
𝜋𝑟𝑖𝑗
𝑎

2
,

resembling the kernel above. To instantiate the descriptor we simply call the factory object the specified parameters.

from miniff.potentials import sigmoid_descriptor_family

descriptor = sigmoid_descriptor_family(r0=10 * a, dr=a / 10, a=a)

Let’s visualise the radial form of the descriptor.

from miniff.presentation import plot_potential_2

plot_potential_2(descriptor, energy_unit="1", length_unit="1")

<AxesSubplot:xlabel='r (1)', ylabel='Energy (1)'>

To perform the reduction we simply feed the descriptor to images.eval.

18 Chapter 3. Tutorials

miniff, Release 0.1.4

result_miniff = images.eval(descriptor.copy(tag="a-a"), "kernel")

Not that descriptor.copy(tag="a-a") makes a copy of the descriptor with the descriptor.tag = "a-a". The
tag is required by images.eval to distinguish between species and possible pairs. For example, having two kinds of
species in the box "a" and "b" we may reduce several kinds of pairs such as "a-a" or "a-b".

Additionally, we specify the function we want to compute. The same descriptor may provide multiple functions at
once: "kernel" stands for the descriptor value while "kernel_gradient" efficiently computes descriptor gradients.

Finally, let’s plot and compare the result.

_, bins, _ = pyplot.hist(result)
pyplot.hist(result_miniff, bins, histtype="step")

(array([13., 14., 16., 27., 8., 5., 7., 5., 4., 1.]),
array([0. , 0.45074515, 0.90149029, 1.35223544, 1.80298058,

2.25372573, 2.70447087, 3.15521602, 3.60596116, 4.05670631,
4.50745146]),

[<matplotlib.patches.Polygon at 0x7fc065414290>])

3.2.4 Advanced

miniff.potentials includes several most common reduction functions. But it is also possible to define yours using
miniff.potentials.general_pair_potential_family. It accepts two methods: f(r) and df_dr(r). As f
is a python function called multiple times during the reduction, it will not benefit from cython optimizations and
parallelism. Nevertheless, it is a handy prototyping tool.

3.2. Computing descriptors 19

miniff, Release 0.1.4

3.3 Classical potentials

miniff is a minimal implementation of classical force fields: this tutorial demonstrates how to implement force fields
for bulk Silicon. More exactly, we will reproduce Fig. 1 of Stillinger and Weber (1985) where they propose and
benchmark a specific form of the classical potential.

3.3.1 The problem

Stillinger and Weber propose to use a sum of the following pair and a triple potentials to model chemical forces between
atoms in Silicon, Eqs. 2.3 and 2.5.

𝑓2(𝑟) = 𝐴(𝐵𝑟−𝑝 − 𝑟−𝑞) · exp[(𝑟 − 𝑎)−1]

𝑓3(𝑟1, 𝑟2, 𝜃) = 𝜆 exp[𝛾(𝑟1 − 𝑎)−1 + 𝛾(𝑟2 − 𝑎)−1]× (cos 𝜃 + cos 𝜃0)
2

Fig. 1 presents how the sum of these potentials scales with atomic density for different types of cubic cells.

3.3.2 Computing with miniff

Stillinger-Weber potential form is readily available in miniff.potentials. To instantiate potentials we specify pa-
rameter values from the manuscript: A, B, p, q, a, , .

from miniff.potentials import sw2_potential_family, sw3_potential_family

si_gauge_a = 7.049556227
si_gauge_b = 0.6022245584
si_p = 4
si_q = 0
si_a = 1.8
si_l = 21
si_gamma = 1.2

sigma = 1 # length unit
epsilon = 0.5 # energy unit: fixes double counting

si2 = sw2_potential_family(
gauge_a=si_gauge_a, gauge_b=si_gauge_b,
a=si_a, p=si_p, q=si_q,
epsilon=epsilon, sigma=sigma)

si3 = sw3_potential_family(
l=si_l, gamma=si_gamma, cos_theta0=-1./3, a=si_a,
epsilon=epsilon, sigma=sigma)

In addition, epsilon and sigma provide the energy and length scales, respectively. The second step is to construct
unit cells with different symmetries: simple cubic (SC), body-centered cubic (BCC), face-centered cubic (FCC), and
diamond. For this, we use kernel.Cell. We do not bother about lattice parameters for the moment: we will re-
compute them from the density of atoms.

from miniff.kernel import Cell
import numpy as np

(continues on next page)

20 Chapter 3. Tutorials

https://doi.org/10.1103/PhysRevB.31.5262

miniff, Release 0.1.4

(continued from previous page)

simple cubic: one atom in a cubic box
c_sc = Cell(np.eye(3), np.zeros((1, 3)), ["si"], meta=dict(tag="BC"))

BCC: one additional atom at the center of the box
c_bcc = Cell(np.eye(3), [[0, 0, 0], [.5, .5, .5]], ["si", "si"], meta=dict(tag="BCC"))

FCC: three additional atoms at box face centers
c_fcc = Cell(np.eye(3), [[0, 0, 0], [.5, .5, 0], [.5, 0, .5], [0, .5, .5]],

["si"] * 4, meta=dict(tag="FCC"))

diamond: rhombic unit cell with two atoms
c_dia = Cell([[0, 1, 1], [1, 0, 1], [1, 1, 0]], [[0, 0, 0], [.25, .25, .25]],

["si"] * 2, meta=dict(tag="DIA"))

cells = [c_sc, c_bcc, c_fcc, c_dia]

Finally, we apply a uniform strain to these cells and compute the total energy as a function of the atomic density. The
kernel.profile_directed_strain batches multiple energy computations into a single function.

from miniff.kernel import profile_directed_strain
from matplotlib import pyplot

density = np.linspace(0.3, 0.7) # target density values from the plot

for c in cells:
d = c.size / c.volume # actual density
e = profile_directed_strain([si2, si3], c, (d / density) ** (1./3), (1, 1, 1))
pyplot.plot(density, e / c.size, label=c.meta["tag"])

pyplot.ylim(-2.2, -0.7)
pyplot.xlim(0.3, 0.7)
pyplot.legend()

<matplotlib.legend.Legend at 0x7fcf331b8f50>

3.3. Classical potentials 21

miniff, Release 0.1.4

3.3.3 Tips

presentation.plot_strain_profile combines profile_directed_strain with plotting routines and con-
structs a similar figure.

22 Chapter 3. Tutorials

CHAPTER

FOUR

MINIFF DESIGN DOCUMENTATION

4.1 Structure

The project includes several modules performing energy and gradients computations, potential parameter optimization
through machine learning, simple geometry optimization and presentation utilities.

• potentials: a core module implementing smooth classical interatomic potentials and descriptors. The
module includes LocalPotentialFamily: a factory for constructing parameterized LocalPotential ob-
jects which, in turn, include all necessary data and interfaces to compute atomic energies and gradients.
Several pre-built potential forms are provided through instantiating LocalPotentialFamily: for example,
lj_potential_family (Lenard-Jones pair potential) or behler5_descriptor_family (Behler type 5 an-
gular descriptor).

• kernel: implements a CellImages class which computes neighbor information from atomic coordinate data
and prepares contiguous data buffers which can be processed by LocalPotential``s. ``CellImages is im-
plemented with 3D periodic boundary conditions in mind to model amorphous materials. However, it also sup-
ports molecular systems without any overhead. kernel also implements a key interface kernel.eval which,
for a given structure and a list of potentials, computes total energy and gradients.

• ml: implements machine learning potentials.

– ml.Dataset is the key container for atomic descriptors, energies and gradients. It ensures that all
dataset pieces are torch.Tensor``s compatible with each other. ``ml.Dataset includes two
large blocks of data, namely one ml.PerCellDataset block with target energies and energy gradients,
and one or more ``ml.PerPointDataset``s with descriptor information.

– ml.Normalization implements normalization of datasets in a physically reasonable way.

– ml.learn_cauldron is a typical entry point for dataset creation which includes reasonable default values.

– ml.SequentialSoleEnergyNN is Behler et al. suggestion for the neural network potential form.

– ml.forward_cauldron is the core routine for machine-learning optimization. It combines dataset and
neural-network models to produce the energy and gradients prediction.

– ml.NNPotential is a neural-network potential subclassing potentials.LocalPotential.

miniff.ml is built around pytorch.

• ml_util: includes reasonable recipes for optimizing neural networks from ml.

– ml_util.simple_energy_closure provides defaults for running the optimization with LBFGS.

– ml_util.*Workflow are workflow classes for optimizing neural-network potentials. These classes accu-
mulate and re-distribute many parameters related to the dataset organization, potential form and optimizatin
process.

• dyn: a toy dynamics module implementing the search of local minima and atomic dynamics.

23

miniff, Release 0.1.4

• presentation: various handy plotting routines to present potentials and visualize machine learning optimiza-
tion process.

4.2 Deployment

miniff can be deployed on high-performance computing (HPC) clusters.

4.2.1 Parallelism

• miniff takes a full advantage of GPU parallelism in pytorch. Please note that it is often not enough to install
pre-built bundles of pytorch as they support only a limited set of (very recent) GPU drivers. If your HPC
hardware does not feature those you have several options:

– It is best to ask your HPC support team for a suitable pytorch build specifically for the HPC machine.
Such builds may be available through module script or other ways to manage the runtime environment on
the cluster: please investigate such options first.

– The second possibility is to use an older pytorch version which bundles kernels for older GPUs. miniff
does its best to support a wide range of pytorch versions but you have to test the compatibility manually
in your case.

– The last possibility is to build pytorchmanually. This is the most tedious approach, thus, not recommended
for unexperienced users.

• OpenMP threading support is present in potential and gradient computations. This may be useful for computing
energies and gradients in large atomic systems. The number of threads is controlled by usual means such as
OMP_NUM_THREADS environment variable. For small atomic systems ~100 atoms up to 2-4 threads are beneficial:
make sure your parallel cluster setup is reasonable.

24 Chapter 4. Miniff Design Documentation

CHAPTER

FIVE

INDICES AND TABLES

• genindex

• modindex

• search

25

	Introduction
	Glossary

	Using miniff
	As an executable
	Arguments

	As a library
	Workflows
	Dataset construction
	Descriptors and potentials

	Tutorials
	Toy function fitting
	The toy problem
	1. Constructing the dataset
	What are descriptors?
	How to choose descriptors?

	2. Fitting the data
	miniff setting
	1. Constructing the dataset (miniff)
	2. Fitting the data (miniff)
	Checking the result

	Advanced

	Computing descriptors
	The problem
	Computing naively
	Computing neighbors with miniff
	1. Compute neighbor lists
	2. Reduce

	Advanced

	Classical potentials
	The problem
	Computing with miniff
	Tips

	Miniff Design Documentation
	Structure
	Deployment
	Parallelism

	Indices and tables

