

Welcome to miniff’s documentation!

Contents:

	Introduction
	Glossary

	Tutorials
	Toy function fitting

	Computing descriptors

	Miniff Design Documentation
	Structure

	Deployment

Indices and tables

	Index

	Module Index

	Search Page

Introduction

Glossary

	atom, point: a vector in real (typically, 3D) space defining the location and the metadata associated with
this location. This gives us information about an individual small object in space.

[image: _images/atom.svg]

	structure, cell, box: a set of points enclosed into a parallelogram and representing a snapshot of
atoms in media (molecular, solid, liquid, etc.). A box is a way to describe how multiple atoms share the
same space. This can simply be a list of coordinates, for example. Related classes: miniff.kernel.Cell,
miniff.kernel.NeighborWrapper.

[image: _images/structure.svg]

	potential, interaction, spring: a protocol (a function) taking atomic coordinates of two or three atoms
(optionally, matching a set of conditions) and producing a single floating-point number. For example, potentials
may describe how strongly atoms interact with each other.

[image: _images/potential.svg]

	atomic environment: a single point picked in a structure. Atomic environment is a very abstract way of
telling which interactions are important and how atoms are grouped by these interactions.

[image: _images/environment.svg]

	partial energy, atomic energy, potential energy: a sum of all interaction values the chosen atom participates
in. The potential energy value may be subject to double-counting issues when a single potential is shared
between many atoms. Related classes: miniff.potentials.LocalPotential, miniff.ml.NNPotential.

[image: _images/partial-energy.svg]

	machine learning (ML) potential: a variant of the partial energy where the sum is replaced by a more complex
process involving machine learning techniques.

[image: _images/ml-potential.svg]

	(total) energy: a sum of all atomic energies defining the cumulative energy accumulated in the structure and
originating from attractions and repulsions of individual atoms. Predicting total energy from structures is
the primary purpose of this package.

[image: _images/total-energy.svg]

	(total) energy landscape: total energy as a function of one or more parameters of a structure. It is simply a way
to look at the total energy as a scalar function of many variables.

[image: _images/potential-landscape.svg]

	(total) energy minimum: a structure and the corresponding total energy minimum of the potential landscape.
Finding potential energy minimum is one of the primary purposes of the total energy description.

[image: _images/total-energy-minimum.svg]

	charge: a scalar belonging to atomic metadata with the properties of partial energy. Charges are used to
treat long-range potentials which cannot be described by atomic environments. Charges are not necessary
physical (Coulomb) charges: they may also be electronegativities or any other scalar property of an atom.

	force, stress: negative gradients of the total energy with respect to coordinates describing structures.
Forces indicate the direction in a multidimensional space where the total energy becomes smaller.

[image: _images/force.svg]

	descriptors: a special sort of potential energy intended to describe atomic environments. Descriptors
are typically defined by local environments. Unlike potentials, descriptor functions usually have a simple
smooth form.

Tutorials

	Toy function fitting
	The toy problem

	1. Constructing the dataset
	What are descriptors?

	How to choose descriptors?

	2. Fitting the data

	miniff setting
	1. Constructing the dataset (miniff)

	2. Fitting the data (miniff)

	Checking the result

	Advanced

	Computing descriptors
	The problem

	Computing naively

	Computing neighbors with miniff
	1. Compute neighbor lists

	2. Reduce

	Advanced

Toy function fitting

miniff is built around the idea of using neural-network fits to describe
inter-atomic interactions. This is done in three basic steps:

	constructing the dataset;

	fitting the data (= finding optimal map parameters);

	using the fit.

This tutorial demonstrates the first two steps in the context of simple scalar
function fitting. We will pick a function and will try to perform a
least-squares fit. Then, we will repeat the procedure with the help of
miniff.ml and miniff.ml_util modules to introduce the key concepts of
dataset construction and fitting in miniff.

The toy problem

Neural-network fitting is useful for interpolating black-box functions which
otherwise require intensive computations. For pedagogical reasons, let us
instead try to fit a simple analytic function defined for positive r and
resembling some features of realistic interatomic potentials:

\[f \left (r \right) = \left (r^2 - r + 1 \right) e^{-r}.\]

Let’s first plot the function:

import numpy as np
from matplotlib import pyplot

def f(r):
 return (r ** 2 - r + 1) * np.exp(-r)

r = np.linspace(0.1, 10, 100)
f_r = f(r)
pyplot.plot(r, f_r)

[<matplotlib.lines.Line2D at 0x7f9f39e40d50>]

[image: tutorial/_build/jupyter_execute/tutorial/fitting_1d_function_0_1.png]

The function has two extrema at r = 1, 2 and decays rapidly: these are
the features which we will attempt to reproduce.

When fitting, we only have access to discretized sampling values f_r,
but not to the functional form f(r). In principle, we may still use
f(r) as a black box to produce more sampling points but we consider this
operation to be computationally expensive, thus, to only be used before
the fitting.

1. Constructing the dataset

The fitting data (or the dataset) includes two pieces of information:
blackbox outputs and descriptors. They can be also seen as right-hand and
left-hand sides of the map g(r)->f(r) respectively, where f(r) are
previously computed blackbox function values f_r.

What are descriptors?

The purpose of descriptors g(r) is to describe values of r where f(r)
was computed in a physically reasonable way. Can we use values of g(r)=r
directly? Yes, but g(r) play the role of pre-conditioners: we input some
intuition about how f(r) would most reasonably look like while leaving
particular details to be determined during the fitting process.

Additionally, we allow the blackbox function to have an arbitrary number of
inputs such as

\[f \left (\vec r \right) = \sum_i { \left (r_i^2 - r_i + 1 \right) e^{-r_i}}.\]

In this case we may want to construct the dataset from vectors of a non-constant
dimension r = ([0], [0.1, 0.2], [2.2, 3, 2], ...). To employ neural network
machinery, however, we usually need a constant number of inputs. This can be
achieved by using a descriptor of the form

\[g \left (\vec r \right) = \sum_i r_i\]

in place of r. Importantly, the above descriptor also respect the permutation
symmetry of f(r): f(x, y) = f(y, x), g(x, y) = g(y, x). Thus, the
follow-up fitting process does not need to deduce this symmetry in a hard way
numerically.

How to choose descriptors?

	g(r) should include as much intuition as possible (symmetries, asymptotic
behavior, …);

	g(r) should be simple enough functions fast to compute.

Here we choose the following family of descriptors which obviously satisfies
both recommendations:

\[g_i (r) = r^i e^{-r}.\]

We also know the exact form of the map to be fitted:

\[f(r) = g_2(r) - g_1(r) + g_0(r).\]

So, to complete the dataset we compute g_0, g_1, g_2 at previously chosen
sampling points.

def g(r, i):
 return r ** i * np.exp(-r)

g_r = np.array(tuple(g(r, i) for i in range(3)))
pyplot.plot(r, f_r, label="target function")
for i, _g in enumerate(g_r):
 pyplot.plot(r, _g, ls="--", label=f"g_{i}")
pyplot.legend()

<matplotlib.legend.Legend at 0x7f9f37d98610>

[image: tutorial/_build/jupyter_execute/tutorial/fitting_1d_function_1_1.png]

2. Fitting the data

For this example whe know there exists a linear combination of descriptors
perfectly reproducing the black-box function

\[f(r) = \sum_i a_i \cdot g_i(r).\]

Thus, the least-squares fit will find map parameters a_i.

gf_map, res, rank, s = np.linalg.lstsq(g_r.T, f_r)
print(gf_map)

from numpy import testing
testing.assert_allclose(gf_map, (1, -1, 1))

[1. -1. 1.]

According to the last formula in the previous section, the answer is [1, -1, 1].

miniff setting

The above solution can be also obtained from miniff with the same workflow.

1. Constructing the dataset (miniff)

miniff.ml contains handy pipelines for dataset construction and pre-processing.
PerCellDataset and PerPointDataset are the two key containers where
descriptors and target function values are stored. Some data pieces (such as
descriptors, but also atomic charges and more) can be assigned to individual points
(atoms) and are stored in PerPointDataset. Other data pieces (such as total
interatomic energies) are cumulative values that are stored in PerCellDataset.
Due to the nature of force-field fitting, there can be only one PerCellDataset
but one or more ``PerPointDataset``s.

In this case we store f_r into the total interaction energy slot of
PerCellDataset to benefit from the energy fitting pipeline.

import torch
from miniff import ml

rhs = ml.PerCellDataset(
 energy=torch.tensor(f_r, dtype=torch.float32)[:, None],
)

All dataset pieces have to be torch tensors of a fixed shape. In this case “energy”
is required to be a column array with the second dimension equal to 1: otherwise a
ValueError will be raised.

Descriptors are stored in PerPointDataset as a standard.

lhs = ml.PerPointDataset(
 features=torch.tensor(g_r.T, dtype=torch.float32)[:, None, :],
 mask=torch.ones(len(r), 1),
)

Here, we additionally specify the mask which weights individual data points. Again,
the dimensions of input tensors are well-defined. As a final step, we collect the
two pieces of fitting data into the Dataset object.

dataset = ml.Dataset(rhs, lhs)

At this point all tensor shapes are checked and we are ready to set up the fitting.

2. Fitting the data (miniff)

First, we need to define the functional form of the map. In this case the map is
linear which is supported by miniff out of the box through
ml.SequentialSoleEnergyNN
torch module [https://pytorch.org/docs/stable/generated/torch.nn.Module.html].

\[f = W \cdot g,\]

where W stands for weights.

nn = ml.SequentialSoleEnergyNN(3, n_layers=1, bias=False)

Here, 3 stands for descriptor count, n_layers specifies the count of
linear layers in the neural network (1 means the linear fit of the
above form), bias=False tells that no constant is added to the linear form.

The SequentialSoleEnergyNN object contains all information needed to
optimize and to reproduce the map in the context of machine learning. In this
case the object wraps 3 previously mentioned parameters a_i to be
optimized.

To obtain the best fit we use energy fit optimisation pipeline defined in
miniff.ml_util. First, we define the closure to be energy difference
closure. In general, closure defines the loss function to optimize but
the corresponding ml_util object also includes default optimization
settings.

from miniff import ml_util

tolerance = dict(
 tolerance_change=1e-14,
 tolerance_grad=1e-14,
)

closure = ml_util.simple_energy_closure([nn], dataset,
 optimizer_kwargs=tolerance)

Let’s check that the initial (random) guess is non-optimal.

print("Initial loss:", closure.loss().loss_value.item())

Initial loss: 0.2201002687215805

Finally, let’s run the optimization and check the loss function value becomes
small.

closure.optimizer_init()
closure.optimizer_step() # LBFGS algorithm by default
loss = closure.last_loss.loss_value.item()
print("Final loss:", loss)
assert loss < 1e-8

Final loss: 1.6759618358104609e-15

Parameters are now stored in the neural network module.

weights = nn[0].weight.detach().squeeze().numpy()
print(weights)
testing.assert_allclose(weights.squeeze(), [1, -1, 1], atol=1e-3)

[1. -1.0000002 1.0000002]

Checking the result

Finally, let’s check whether the fit is reasonable by plotting it.

def nn_fit(r, descriptor_fns, nn):
 # Compute descriptors
 descriptors = np.array(tuple(g(r) for g in descriptor_fns))
 # Compute the map
 result = nn(torch.tensor(descriptors.T, dtype=torch.float32))
 return result.detach().numpy().squeeze()

from functools import partial

f_r_test = nn_fit(
 r,
 tuple(partial(g, i=i) for i in range(3)),
 nn,
)
pyplot.plot(r, f_r)
pyplot.scatter(r, f_r_test)

<matplotlib.collections.PathCollection at 0x7f9edd25ec90>

[image: tutorial/_build/jupyter_execute/tutorial/fitting_1d_function_11_1.png]

The function nn_fit demonstrates how to propagate the map forward: one needs
to (1) compute descriptors as a function of input r and (2) to feed them to the
neural network.

Advanced

It does not make sense to use anything but linear map for this particular
problem with a known exact solution. However, if we chose to, for example,
reduce the descriptors to g_0 only or to chose different descriptors then
the linear map becomes a crude approximation. In this case one typically
switches to a more general neural-network setting with non-linear activation
layers helping to map various curvature features in the dataset. One can use
torch machinery for this or just otherwise increase n_layers when
initializing the map. With n_layers=2, for example, one sigmoid activation
layer is inserted between two linear layers.

The use of ml_util functions is entirely optional. They aim to provide
default optimization setting to start with: loss functions (2-norm),
optimizers (LBFGS), descriptor sets (Behler recipe). You are free to modify
and replace these components at the point when you feel that the default
choice is no longer optimal.

Computing descriptors

Computing descriptors is an important part of both constructing datasets and
using neural-network fits.

The problem

Consider a unit box in 3 dimensions. n = 100 atoms are present in the box;
their cartesian coordinates are written in a [100 x 3] matrix r such
that 0 <= r <= 1.

import numpy as np

n = 100
a = 0.3
r = np.random.rand(100, 3)

Our task is to count atomic neighbors inside a shell of size a = 0.3 for
each atom. This is what a typical descriptor looks like: it counts neighbors
in shells around each atom.

To make a continuous function out of neighbor count let’s introduce a kernel
function of neighbor distance r smoothly decaying from a unit value at
r = 0 down to zero at cutoff value r = a. Let’s take a half-period of
cosine function for this example.

\[g(r) = \frac{1 + \cos \frac{\pi r}{a}}{2} \quad r < a\]

def g(r):
 return (1 + np.cos(np.pi * r / a)) / 2 * (r < a)

from matplotlib import pyplot
x = np.linspace(0, a)
pyplot.plot(x, g(x))

[<matplotlib.lines.Line2D at 0x7fc4cc356b90>]

[image: tutorial/_build/jupyter_execute/tutorial/computing_descriptors_1_1.png]

Instead of computing neighbors directly let’s compute the cumulative value
of the kernel function for all neighbors.

\[n_i = \sum_j g (r_{ij})\]

Computing naively

We start with computing all pair distances between atoms.

mdist = np.linalg.norm(r[:, None, :] - r[None, :, :], axis=-1)

Then, we reduce pair distances using the kernel function.

result = g(mdist).sum(axis=0) - 1

Finally, we can plot the distribution of neighbors across all points.

from matplotlib import pyplot
pyplot.hist(result)

(array([9., 9., 8., 15., 19., 19., 7., 7., 6., 1.]),
 array([0.06378275, 0.46123098, 0.85867922, 1.25612745, 1.65357569,
 2.05102393, 2.44847216, 2.8459204 , 3.24336863, 3.64081687,
 4.0382651]),
 <BarContainer object of 10 artists>)

[image: tutorial/_build/jupyter_execute/tutorial/computing_descriptors_4_1.png]

This approach is straightforward but not efficient. First, matrix mdist
includes information about very distant atoms we simply discard. Second, we can
only perform pair reductions this way: counting atomic triples within the same
sphere of radius a will require a tensor with three dimensions raising memory
requirements by a factor of n = 100. Instead, miniff uses a more efficient
approach with a quasi-linear complexity scaling.

Computing neighbors with miniff

miniff provides an interface to computing neighbors efficiently. It uses
KDTree from scipy to compute neighbor lists and cython functions
to iterate over the list and to reduce it to the desired quantities. As such,
there are two key steps.

1. Compute neighbor lists

The primary purpose of miniff.kernel module is to perform neighbor list
construction with NeighborWrapper class. To do it, we first construct
a unit cell object with atomic coordinates.

from miniff.kernel import Cell, NeighborWrapper

cell = Cell(np.eye(3), r, ['a'] * len(r))

The second step is to define the wrapper by providing coordinates and
periodicity information.

nw = NeighborWrapper(cell, (1, 1, 1))

In this case (1, 1, 1) indicates a box with no periodic replica. Finally,
neighbor computations are invoked separately by providing the neighbor cutoff
value to method compute_distances(cutoff).

nw.compute_distances(a)
print(len(nw.sparse_pair_distances.data))

744

As a result, nw.sparse_pair_distances is populated with neighbor distance
data.

2. Reduce

In principle, neighbor counts can be deduced from the sparse matrix
nw.sparse_pair_distances directly with previously defined method g.
A more conventional workflow is to pick a reduction function from
miniff.potentials module. Specifically,
miniff.potentials.sigmoid_descriptor_family provides the following reduction
function:

\[n_i = \sum_j \frac{1}{1 + e^\frac{r_{ij} - r_0}{dr}} \cdot \frac{1 + \cos \frac{\pi r_{ij}}{a}}{2},\]

where r_ij is the distance matrix, r0, dr and a are constant
parameters. By setting dr to a small value and r0 to 2a we simplify
the expression to the second term only

\[n_i \approx \sum_j \frac{1 + \cos \frac{\pi r_{ij}}{a}}{2},\]

resembling the kernel function defined previously. To instantiate the descriptor
we simply call the factory object the specified parameters.

from miniff.potentials import sigmoid_descriptor_family

descriptor = sigmoid_descriptor_family(r0=10 * a, dr=a / 10, a=a)

Let’s visualise the radial form of the descriptor.

from miniff.presentation import plot_potential_2

plot_potential_2(descriptor, energy_unit="1", length_unit="1")

<AxesSubplot:xlabel='r (1)', ylabel='Energy (1)'>

[image: tutorial/_build/jupyter_execute/tutorial/computing_descriptors_9_1.png]

To perform the reduction we simply feed the descriptor to NeighborWrapper.

result_miniff = nw.eval(descriptor.copy(tag="a-a"), "kernel")

Not that descriptor.copy(tag="a-a") makes a copy of the descriptor with
the descriptor.tag = "a-a". The tag is required by NeighborWrapper
to distinguish between species and possible pairs. For example, having two
kinds of species in the box "a" and "b" we may reduce several kinds
of pairs such as "a-a" or "a-b".

Additionally, we specify the function we want to compute. The same descriptor
may provide multiple functions at once: "kernel" stands for the descriptor
value while "kernel_gradient" efficiently computes descriptor gradients.

Finally, let’s plot and compare the result.

_, bins, _ = pyplot.hist(result)
pyplot.hist(result_miniff, bins, histtype="step")

(array([9., 9., 8., 15., 19., 19., 7., 7., 6., 0.]),
 array([0.06378275, 0.46123098, 0.85867922, 1.25612745, 1.65357569,
 2.05102393, 2.44847216, 2.8459204 , 3.24336863, 3.64081687,
 4.0382651]),
 [<matplotlib.patches.Polygon at 0x7fc46f491690>])

[image: tutorial/_build/jupyter_execute/tutorial/computing_descriptors_11_1.png]

Advanced

miniff.potentials includes several most common reduction functions. But it
is also possible to define yours using miniff.potentials.general_pair_potential_family.
It accepts two methods: f(r) and df_dr(r). As f is a python function
called multiple times during the reduction, it will not benefit from cython
optimizations and parallelism. Nevertheless, it is a handy prototyping tool.

Miniff Design Documentation

Structure

The project includes several modules performing energy and gradients computations, potential parameter optimization
through machine learning, simple geometry optimization and presentation utilities.

	potentials: a core module implementing smooth classical interatomic potentials and descriptors. The module includes
LocalPotentialFamily: a factory for constructing parameterized LocalPotential objects which, in turn, include
all necessary data and interfaces to compute atomic energies and gradients. Several pre-built potential forms are
provided through instantiating LocalPotentialFamily: for example, lj_potential_family (Lenard-Jones pair
potential) or behler5_descriptor_family (Behler type 5 angular descriptor).

	kernel: implements a NeighborWrapper class which computes neighbor information from atomic coordinate data and
prepares contiguous data buffers which can be processed by LocalPotential``s.
``NeighborWrapper is implemented with 3D periodic boundary conditions in mind to model amorphous materials. However,
it also supports molecular systems without any overhead. NeighborWrapper also implements a key interface
NeighborWrapper.eval which, for a given structure and a list of potentials, computes total energy and gradients.
NeighborWrapper.relax introduces a toy interface for structural relaxation using scipy minimizers.

	ml: implements machine learning potentials.

	ml.Dataset is the key container for atomic descriptors, energies and gradients. It ensures that all dataset pieces
are torch.Tensor``s compatible with each other. ``ml.Dataset includes two large blocks of data, namely one
ml.PerCellDataset block with target energies and energy gradients, and one or more ``ml.PerPointDataset``s with
descriptor information.

	ml.Normalization implements normalization of datasets in a physically reasonable way.

	ml.learn_cauldron is a typical entry point for dataset creation which includes reasonable default values.

	ml.SequentialSoleEnergyNN is Behler et al. suggestion for the neural network potential form.

	ml.forward_cauldron is the core routine for machine-learning optimization. It combines dataset and neural-network
models to produce the energy and gradients prediction.

	ml.NNPotential is a neural-network potential subclassing potentials.LocalPotential.

miniff.ml is built around pytorch.

	ml_util: includes reasonable recipes for optimizing neural networks from ml.

	ml_util.simple_energy_closure provides defaults for running the optimization with LBFGS.

	ml_util.*Workflow are workflow classes for optimizing neural-network potentials. These classes
accumulate and re-distribute many parameters related to the dataset organization, potential form and optimizatin process.

	presentation: various handy plotting routines to present potentials and visualize machine learning optimization
process.

Deployment

miniff can be deployed on high-performance computing (HPC) clusters.

Parallelism

	miniff takes a full advantage of GPU parallelism in pytorch. Please note that it is often not enough to install
pre-built bundles of pytorch as they support only a limited set of (very recent) GPU drivers. If your HPC hardware
does not feature those you have several options:

	It is best to ask your HPC support team for a suitable pytorch build specifically for the HPC machine. Such builds
may be available through module script or other ways to manage the runtime environment on the cluster: please
investigate such options first.

	The second possibility is to use an older pytorch version which bundles kernels for older GPUs. miniff does its
best to support a wide range of pytorch versions but you have to test the compatibility manually in your case.

	The last possibility is to build pytorch manually. This is the most tedious approach, thus, not recommended for
unexperienced users.

	OpenMP threading support is present in potential and gradient computations. This may be useful for computing energies
and gradients in large atomic systems. The number of threads is controlled by usual means such as OMP_NUM_THREADS
environment variable. For small atomic systems ~100 atoms up to 2-4 threads are beneficial: make sure your parallel
cluster setup is reasonable.

Index

 _static/file.png

_static/minus.png

_static/plus.png

nav.xhtml

 Table of Contents

 		
 Welcome to miniff’s documentation!

 		
 Introduction

 		
 Glossary

 		
 Tutorials

 		
 Toy function fitting

 		
 The toy problem

 		
 1. Constructing the dataset

 		
 2. Fitting the data

 		
 miniff setting

 		
 Advanced

 		
 Computing descriptors

 		
 The problem

 		
 Computing naively

 		
 Computing neighbors with miniff

 		
 Advanced

 		
 Miniff Design Documentation

 		
 Structure

 		
 Deployment

 		
 Parallelism

